new vlc media player

import React, { useEffect, useRef } from 'react';

import { View, StyleSheet, Dimensions, Image } from 'react-native';

import VLCPlayer from 'react-native-vlc-player';

import * as tf from '@tensorflow/tfjs';

import '@tensorflow/tfjs-react-native';


const ObjectDetection = () => {

  const vlcPlayerRef = useRef(null);

  const modelRef = useRef(null);


  useEffect(() => {

    const loadModel = async () => {

      try {

        await tf.ready();

        const modelPath = 'path/to/your/model.json';

        modelRef.current = await tf.loadLayersModel(modelPath);

      } catch (error) {

        console.error('Error loading model:', error);

      }

    };


    loadModel();

  }, []);


  const processFrame = async () => {

    try {

      const snapshot = await vlcPlayerRef.current.takeSnapshot(true);

      const imageTensor = tf.browser.fromPixels({ uri: `data:image/jpeg;base64,${snapshot}` });

      

      // Preprocess the image for object detection

      const preprocessedTensor = preprocessImage(imageTensor);


      // Perform object detection using the loaded model

      const predictions = modelRef.current.predict(preprocessedTensor);


      // Process the predictions and perform necessary actions

      processPredictions(predictions);


      imageTensor.dispose();

      preprocessedTensor.dispose();

      tf.dispose(predictions);

    } catch (error) {

      console.error('Error processing frame:', error);

    }


    requestAnimationFrame(processFrame);

  };


  const preprocessImage = (imageTensor) => {

    // Resize the image to the desired input size

    const resizedTensor = tf.image.resizeBilinear(imageTensor, [224, 224]);


    // Normalize the pixel values to the range [0, 1]

    const normalizedTensor = resizedTensor.div(255);


    // Expand the dimensions to match the expected input shape of the model

    const preprocessedTensor = normalizedTensor.expandDims();


    return preprocessedTensor;

  };


  const processPredictions = (predictions) => {

    // Process the predictions and perform necessary actions

    // You can iterate over the predictions and extract relevant information

    // For example, you can filter predictions based on a certain threshold,

    // draw bounding boxes on the image, or trigger other events based on detected objects.


    // Here's an example of logging the top prediction:

    const topPrediction = predictions.argMax().dataSync()[0];

    console.log('Top prediction:', topPrediction);

  };


  return (

    <View style={styles.container}>

      <VLCPlayer

        ref={vlcPlayerRef}

        style={styles.videoPlayer}

        videoAspectRatio="16:9"

        source={{

          uri: 'rtsp://admin:admin@192.168.184.64:1935',

          autoplay: true,

          initOptions: ['--rtsp-tcp'],

        }}

      />

      {/* Add any UI components or overlays as needed */}

      {/* Example: Display the processed frame */}

      <View style={styles.overlay}>

        <Image source={{ uri: 'data:image/jpeg;base64,${snapshot}' }} style={styles.processedImage} />

      </View>

    </View>

  );

};


const styles = StyleSheet.create({

  container: {

    flex: 1,

  },

  videoPlayer: {

    flex: 1,

    width: Dimensions.get('window').width,

    height: Dimensions.get('window').height,

  },

  overlay: {

    position: 'absolute',

    top: 0,

    left: 0,

    width: Dimensions.get('window').width,

    height: Dimensions.get('window').height,

    justifyContent: 'center',

    alignItems: 'center',

  },

  processedImage: {

    width: Dimensions.get('window').width,

    height: Dimensions.get('window').height,

    resizeMode: 'cover',

  },

});


export default ObjectDetection;


Comments

Popular posts from this blog

WR3D wwe 2k19 MOD apk direct download link for Android

Download wwe2k17 wr3d

How to make resizeable window in pygame and make content adjustable according to window size