last gpt4 live camera

 import React, { useEffect, useRef, useState } from 'react';

import { View, StyleSheet, Dimensions, Image } from 'react-native';

import VLCPlayer from 'react-native-vlc-player';

import * as tf from '@tensorflow/tfjs';

import { fetch } from '@tensorflow/tfjs-react-native';

import { decodeJpeg } from '@tensorflow/tfjs-react-native';


const ObjectDetection = () => {

  const vlcPlayerRef = useRef(null);

  const modelRef = useRef(null);

  const streamingRef = useRef(false);

  const [overlayImage, setOverlayImage] = useState(null);


  useEffect(() => {

    const loadModel = async () => {

      try {

        await tf.ready();

        modelRef.current = await tf.loadGraphModel(

          fetch(

            'https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2/default/1',

            { method: 'GET' }

          )

        );

        streamingRef.current = true;

      } catch (error) {

        console.error('Error loading model:', error);

      }

    };


    loadModel();

  }, []);


  const processFrame = async () => {

    if (!streamingRef.current) {

      return;

    }


    try {

      const snapshot = await vlcPlayerRef.current.takeSnapshot(true);

      const imageTensor = await decodeJpeg(new Uint8Array(snapshot));

      const preprocessedTensor = imageTensor.resizeBilinear([300, 300]).expandDims();

      const predictions = await modelRef.current.executeAsync(preprocessedTensor);


      const processedImage = processPredictions(predictions, imageTensor);

      setOverlayImage(processedImage);


      imageTensor.dispose();

      preprocessedTensor.dispose();

      tf.dispose(predictions);

    } catch (error) {

      console.error('Error processing frame:', error);

    }


    requestAnimationFrame(processFrame);

  };


  const processPredictions = (predictions, imageTensor) => {

    // Process the predictions and draw bounding boxes on the image

    // You can filter predictions based on a certain threshold or other criteria


    const canvas = document.createElement('canvas');

    const ctx = canvas.getContext('2d');

    canvas.width = imageTensor.shape[1];

    canvas.height = imageTensor.shape[0];


    // Draw the original image on the canvas

    const imageData = new ImageData(new Uint8ClampedArray(imageTensor.dataSync()), canvas.width, canvas.height);

    ctx.putImageData(imageData, 0, 0);


    // Draw bounding boxes for detected objects

    const boxes = predictions[0].dataSync();

    const scores = predictions[1].dataSync();

    const classes = predictions[2].dataSync();


    for (let i = 0; i < scores.length; i++) {

      if (scores[i] > 0.5) {

        const [y1, x1, y2, x2] = boxes.slice(i * 4, i * 4 + 4);

        ctx.strokeStyle = 'red';

        ctx.lineWidth = 2;

        ctx.strokeRect(x1 * canvas.width, y1 * canvas.height, (x2 - x1) * canvas.width, (y2 - y1) * canvas.height);

      }

    }


    // Convert the canvas to a base64-encoded image

    const processedImage = canvas.toDataURL('image/jpeg');

    return processedImage;

  };


  useEffect(() => {

    processFrame();


    return () => {

      streamingRef.current = false;

    };

  }, []);


  return (

    <View style={styles.container}>

      <VLCPlayer

        ref={vlcPlayerRef}

        style={styles.videoPlayer}

        videoAspectRatio="16:9"

        source={{

          uri: 'rtsp://admin:admin@192.168.184.64:1935',

          autoplay: true,

          initOptions: ['--rtsp-tcp'],

        }}

      />

      <View style={styles.overlay}>

        <Image style={styles.processedImage} source={{ uri: overlayImage }} />

      </View>

    </View>

  );

};


const styles = StyleSheet.create({

  container: {

    flex: 1,

  },

  videoPlayer: {

    flex: 1,

    width: Dimensions.get('window').width,

    height: Dimensions.get('window').height,

  },

  overlay: {

    position: 'absolute',

    top: 0,

    left: 0,

    width: Dimensions.get('window').width,

    height: Dimensions.get('window').height,

    justifyContent: 'center',

    alignItems: 'center',

  },

  processedImage: {

    width: Dimensions.get('window').width,

    height: Dimensions.get('window').height,

    resizeMode: 'cover',

  },

});


export default ObjectDetection;


Comments

Popular posts from this blog

WR3D wwe 2k19 MOD apk direct download link for Android

Download wwe2k17 wr3d

How to make resizeable window in pygame and make content adjustable according to window size