detection with tenserflow

 import React, { Component } from 'react';

import { View, StyleSheet } from 'react-native';

import Video from 'react-native-video';

import * as tf from '@tensorflow/tfjs';

import '@tensorflow/tfjs-react-native';


// Constants for object detection

const MODEL_URL = 'https://tfhub.dev/tensorflow/tfjs-model/ssd_mobilenet_v1/1/default/1/model.json';

const INPUT_SIZE = 224; // Input size required by the model

const OBJECT_THRESHOLD = 0.5; // Minimum confidence threshold for detected objects


class VideoScreen extends Component {

  constructor(props) {

    super(props);


    this.state = {

      isModelReady: false,

      objects: [],

    };


    // Load the TensorFlow.js model

    this.loadModel();

  }


  async loadModel() {

    try {

      await tf.ready();

      const model = await tf.loadGraphModel(MODEL_URL);

      this.setState({ isModelReady: true, model });

      this.processVideoFrames();

    } catch (error) {

      console.error('Error loading the model:', error);

    }

  }


  processVideoFrames() {

    if (!this.state.isModelReady) return;


    const videoStream = { uri: 'http://192.168.1.16/' }; // Replace with the video stream URL


    this.videoRef.seek(0);


    const loop = async () => {

      const frame = await this.videoRef.getCurrentFrame();

      if (!frame) return;


      const { width, height } = frame;

      const imageData = frame.data;

      const imageTensor = tf.browser.fromPixels({ data: new Uint8Array(imageData), width, height });

      const resizedTensor = tf.image.resizeBilinear(imageTensor, [INPUT_SIZE, INPUT_SIZE]);

      const batchedTensor = resizedTensor.expandDims(0);

      const scaledTensor = batchedTensor.div(255);


      const predictions = await this.state.model.executeAsync(scaledTensor);

      const objects = this.parseObjectDetection(predictions);


      this.setState({ objects });


      requestAnimationFrame(loop);

    };


    this.videoRef.setOnPlaybackStatusUpdate(loop);

    this.videoRef.ref.setNativeProps({ source: videoStream });

  }


  parseObjectDetection(predictions) {

    const [boxes, scores, classes, numDetections] = predictions;


    const objects = [];


    for (let i = 0; i < numDetections; i++) {

      const score = scores[i];

      const classIndex = classes[i];

      const boundingBox = boxes[i];


      if (score > OBJECT_THRESHOLD) {

        const object = {

          class: classIndex,

          score: score,

          box: boundingBox,

        };


        objects.push(object);

      }

    }


    return objects;

  }


  render() {

    return (

      <View style={styles.container}>

        <Video

          ref={(ref) => (this.videoRef = ref)}

          style={styles.videoPlayer}

          resizeMode="cover"

          repeat={true}

          paused={false}

        />


        {/* Render the detected objects as overlays */}

        {this.state.objects.map((object, index) => (

          <View

            key={index}

            style={[

              styles.boundingBox,

              {

                left: object.box.originX,

                top: object.box.originY,

                width: object.box.width,

                height: object.box.height,

              },

            ]}

          />

        ))}

      </View>

    );

  }

}


const styles = StyleSheet.create({

  container: {

    flex: 1,

    backgroundColor: '#000',

    justifyContent: 'center',

    alignItems: 'center',

  },

  videoPlayer: {

    position: 'absolute',

    top: 0,

    left: 0,

    width: '100%',

    height: '100%',

  },

  boundingBox: {

    position: 'absolute',

    borderColor: 'red',

    borderWidth: 2,

  },

});


export default VideoScreen;


Comments

Popular posts from this blog

WR3D wwe 2k19 MOD apk direct download link for Android

Download wwe2k17 wr3d

How to make resizeable window in pygame and make content adjustable according to window size